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Examples of Parameterization

• The line parameter t on a straight line 

• The knot vector of B-splines 

• Latitude/longitude coordinates  

on the globe
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Notation and Terms

• Problem definition: 

Let                                           be the set of vertices 

of a mesh M. 

Find a mapping (= parameterization) 

 
with the following properties: 

• g(M) must not contain self-intersections 

• I.e., no inverted triangles 

• Otherwise, f = g-1 would not exist! 

• Using barycentric interpolation, the function g 

can be extended to the interior of the triangles
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More notation

• Pi = mesh vertices,  pi  = parameter points 

•   

                            = "inner" vertices 

                                   = "boundary" vertices 

• N = n + b 

• pn+1, …, pn+b  =  boundary polygon in the 

parameter domain u,v 

• g(Pi) = pi = (ui, vi) 

• E = set of edges, corresponding in M and in g(M)
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Motivation of the Parameterization Method 

• Fix the border polygon  pn+1, …, pn+b 

• How to determine the interior pi's ? 

• Idea: "edges = springs" 

• Assumption: rest length of springs = 0 

• So, energy stored in an extended spring =  

where D = spring constant, s = length of the spring 

• Set Dij > 0 for all edges (pi, pj) ,  and set Dij = 0  for all other (i,j) 

• Generalization: we allow Dij ≠ Dji ! 

• Define the total energy of a parameterization: 

• Goal: minimize this energy (penalty function)
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The Parameterization Method 

• Partial derivatives of E are 

• Setting those to 0 yields 

• In other words: each interior parameter point pi  must be a convex 

combination of its neighbors (its 1-ring), in particular
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• Splitting the sum on the right hand side yields 

and thus 

• These are two simple linear equation systems 

where 

with
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• Final step for generating the parameterization: choose λ's  such, that 

 

 

 

 

then solve the LES for u and v 

• Theorem: 

    If the λ's are chosen as described above, then the matrix A is non-singular. 

• In other words: The linear systems have a unique solution
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Proof

• Definition: 

An nxn matrix A is called decomposable (aka reducible) ⇔ 

there exists a permutation matrix P such that 

 

 

 

where B and D are square matrices, too. 

Otherwise it is called non-decomposable. 

• Note: In our application, P is equivalent to a renumbering of the vertices in 

M and, likewise, the parameter points
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• In our case: A is of the special form 

 

where 

• Conjecture:  Λ is non-decomposable (thus, A is non-decomposable, too) 

• Proof: 

1. If ! was decomposable, then a renumbering of vertices would be possible 

such that  

 

Note: 

2. Consequence: the graph (mesh) would consist of 2 non-connected parts ⚡
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• Further notes on matrix !: 

• Every row i corresponds to the inner point pi 

•   

• Note: Λ does not contain λij's  corresponding 

to edges connecting a boundary point! 

• If pi has no edges to boundary points, then 

• If pi does have edges to boundary points, then
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• Theorem from matrix theory (without proof): 

  Let A be a non-decomposable matrix with non-negative elements. 

  Denote the sums of the rows with 

 

 

 

  Assume that A has the property that 

 

 

  Let r be the maximum eigenvalue of A. 

  Then,                      .
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• Now for the proof that A is non-singular: 

• We have to show  

• Plugging in yields 

• Assumption: there exists such a w ≠ 0 

• Then, 1 would be an eigenvalue of ! 

• For our !, we know that some of the si = 1 , and some si < 1  

• Therefore, by the previous theorem:  the maximal eigenvalue < 1 → ⚡
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Some Concrete Choices for the λ's 

• Naïve choice [1963, graph drawing]: 

• Set λij = 1/di  for each Pi , where di = degree of the vertex = #neighbors 

• In other words: Each pi is the "center of mass" of its neighbors 

• This is called uniform parameterization 

• By analogy to uniform parameterization for B-splines 

• Chord length parameterization: 

• Set                                (in 3D space) 

• Set 

• So, the stiffness of edges in the 2D mesh (in the parameter domain) is inversely 

proportional to the length of their edges in the 3D mesh
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• Use mean value coordinates (MVC): 

• Set the λij = the mean value coordinates of Pi  with respect to its direct neighbors 

Pj  in the 3D mesh M (!) 

• One version how to do this: 

• Determine for each Pi its direct neighbors Pj  (= 1-ring of Pi ) 

• Determine a least squares plane through these points (linear regression) 

• Project these points onto that plane  

• Determine the mean value coordinates of Pi w.r.t. Pj in that plane  

(now this is a 2D MVC problem) 

• Now it is clear, why we had to allow λij ≠ λji !
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Putting it All Together

• Calculate all the λij  

• Having those, set up matrix A and vectors b and c 

• Solve the LES's 

• Use a sparse solver to solve for u and v
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Application of the Parameterization to Texturing
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Many further applications of such  

parameterization methods exist, because 

parameterization allows us to operate on a 

mesh, as if it was flat, i.e., living in the 2D 

plane.
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Demo

18

Demo using an iterative solver for the sparse linear system, 
showing intermediate solutions of the parameterization

B
a
ch

e
lo

r-A
rb

e
it / In

d
e
p

. S
tu

d
y
: b

e
sse

re
 D

e
m

o
, d

ie
 m

e
h

r 
O

B
J's ve

ra
rb

e
ite

n
 ka

n
n

; e
v
tl. Z

u
sä

tzlich
e
 A

u
fg

a
b

e
: 

b
e
sse

re
s b

o
u

n
d

a
ry

 h
a
n

d
lin

g
 (s. S

ig
g

ra
p

h
-Tu

to
ria

l)



G. Zachmann ParameterizationAdvanced Computer Graphics SS July 2024

Videos of the Demo
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