

Advanced Computer Graphics Parameterization

G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de

Examples of Parameterization

- The line parameter t on a straight line
- The knot vector of B-splines
- Latitude/longitude coordinates on the globe

t=0.2

Notation and Terms

• Problem definition: Let $V = \{P_1, \dots, P_N\} \subset \mathbb{R}^3$ be the set of vertices of a mesh M. Find a mapping (= parameterization) $g : V \to \mathbb{R}^2$

with the following properties:

- g(M) must not contain self-intersections
 - I.e., no *inverted triangles*
- Otherwise, $f = g^{-1}$ would not exist!
- Using barycentric interpolation, the function *g* can be extended to the interior of the triangles

More notation

• P_i = mesh vertices, p_i = parameter points

•
$$V = V_I \cup V_B$$

 $V_I = \{P_1, \dots, P_n\} = "inner" vertices$
 $V_B = \{P_{n+1}, \dots, P_{n+b}\} = "boundary" vertices$

•
$$N = n + b$$

• $p_{n+1, ..., p_{n+b}}$ = boundary polygon in the parameter domain u, v

•
$$g(P_i) = p_i = (u_i, v_i)$$

• E = set of edges, corresponding in M and in g(M)

Motivation of the Parameterization Method

- Fix the border polygon $p_{n+1, \dots, p_{n+b}}$
- How to determine the interior p_i 's?
- Idea: "edges = springs"
 - Assumption: rest length of springs = 0
 - So, energy stored in an extended spring = $\frac{1}{2}Ds^2$ where D = spring constant, s = length of the spring
 - Set $D_{ij} > 0$ for all edges (p_i, p_j) , and set $D_{ij} = 0$ for all other (i, j)
 - Generalization: we allow $D_{ii} \neq D_{ii}$!
- Define the total energy of a parameterization: E =
- Goal: minimize this energy (penalty function)

$$= \sum_{i=1}^{n} \sum_{j=1}^{N} D_{ij} \|p_i - p_j\|^2$$

G. Zachmann

Bremen

Advanced Computer Graphics

SS July 2024

• Partial derivatives of *E* are

$$\forall i = 1 \dots n : \frac{\partial E}{\partial p_i} = \sum_{j=1}^N D_{ij}(p_i - p_j)$$

Setting those to 0 yields

$$\forall i=1\ldots n: p_i \sum_{j=1}^N D_{ij} = \sum_{j=1}^N D_{ij} p_{j}$$

• In other words: each interior parameter point p_i must be a convex combination of its neighbors (its 1-ring), in particular

$$orall i = 1 \dots n$$
 : $p_i = \sum_{j=1}^N \lambda_{ij} p_j$, $ext{mit} \ \lambda_{ij}$ =

 $p_j)$

)

 $=\frac{\nu_{ij}}{\sum_{i=1}^{N}D_{ik}}$

• Splitting the sum on the right hand side yields

$$p_i = \sum_{j=1}^n \lambda_{ij} p_j + \sum_{j=n+1}^N \lambda_{ij} p_j$$

and thus

$$p_i - \sum_{j=1}^n \lambda_{ij} p_j = \sum_{j=n+1}^N \lambda_{ij} p_j$$

• These are two simple linear equation systems $A\mathbf{u} = \mathbf{b}$ und $A\mathbf{v} = \mathbf{c}$ where $A = (a_{ij})_{n \times n}$ $\mathbf{u} = (u_1, ..., u_n)$ $\mathbf{v} = (v_1, ..., v_n)$

with
$$a_{ij} = \begin{cases} 1 & , i = j \\ -\lambda_{ij} & , (p_i, p_j) \in E \\ 0 & , \text{ sonst} \end{cases}$$
, $b_i = \sum_{j=n+1}^N \lambda_{ij} u_j$

Advanced Computer Graphics

• Final step for generating the parameterization: choose λ 's such, that

$$orall (i,j) \in E: \lambda_{ij} > 0$$
 , $orall (i,j)
ot \in E: \lambda_{ij} = i = 1 \dots n$, $j = 1 \dots N$

then solve the LES for **u** and **v**

- Theorem: If the λ 's are chosen as described above, then the matrix A is non-singular.
- In other words: The linear systems have a unique solution

Proof

Definition:

An *n*x*n* matrix *A* is called decomposable (aka reducible) ⇔ there exists a permutation matrix *P* such that

$$A' = P^{-1}AP = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix}$$

where B and D are square matrices, too. Otherwise it is called non-decomposable.

• Note: In our application, P is equivalent to a renumbering of the vertices in *M* and, likewise, the parameter points

- In our case: A is of the special form $A = I - \Lambda$ where $\Lambda = (\lambda_{ij}), \ i, j = 1 \dots n, \quad \lambda_{ii} \ge 0$
- Conjecture: Λ is non-decomposable (thus, A is non-decomposable, too)
- Proof:
 - 1. If Λ was decomposable, then a renumbering of vertices would be possible such that $\Lambda = \begin{pmatrix} B & 0 \\ 0 & D \end{pmatrix}$

Note:
$$\lambda_{ij} = 0 \iff \lambda_{ji} = 0$$

2. Consequence: the graph (mesh) would consist of 2 non-connected parts \neq

Advanced Computer Graphics

- Further notes on matrix A:
 - Every row *i* corresponds to the inner point p_i
 - $\lambda_{ij} > 0 \Leftrightarrow (i,j) \in E$
 - Note: Λ does *not* contain λ_{ij} 's corresponding to edges connecting a boundary point!
 - If p_i has no edges to boundary points, then $\sum_{j=1}^n \lambda_j$
 - If p_i does have edges to boundary points, then $\sum_{j=1}^{n}$

$$\lambda_{ij} = 1$$
 $\lambda_{ij} < 1$

• Theorem from matrix theory (without proof): Let A be a non-decomposable matrix with non-negative elements. Denote the sums of the rows with

$$s_i = \sum_{j=1}^n a_{ij}$$
, $i = 1 \dots n$

Assume that A has the property that

$$\min_{i=1...n} s_i \leqq \max_{i=1...n} s_i$$

Let *r* be the *maximum* eigenvalue of *A*. Then, $r < \max_{i=1...n} s_i$.

- Now for the proof that A is non-singular:
 - We have to show

$$Aw = 0 \Leftrightarrow w = 0$$

Plugging in yields

$$(I - \Lambda)w = 0 \Leftrightarrow \Lambda w = w$$

- Assumption: there exists such a $w \neq 0$
- Then, 1 would be an eigenvalue of Λ
- For our Λ , we know that some of the $s_i = 1$, and some $s_i < 1$
- Therefore, by the previous theorem: the maximal eigenvalue < 1 $\rightarrow \frac{1}{2}$

Some Concrete Choices for the λ 's

- Naïve choice [1963, graph drawing]:
 - Set $\lambda_{ij} = 1/d_i$ for each P_i , where d_i = degree of the vertex = #neighbors
 - In other words: Each p_i is the "center of mass" of its neighbors
 - This is called uniform parameterization
 - By analogy to uniform parameterization for B-splines
- Chord length parameterization:
 - Set $w_{ii} = 1/||P_i P_i||$ (in 3D space)

• Set
$$\lambda_{ij} = \frac{w_{ij}}{\sum_{j=1}^{N} w_{ij}}$$

• So, the stiffness of edges in the 2D mesh (in the parameter domain) is inversely proportional to the length of their edges in the 3D mesh

- Use mean value coordinates (MVC):
 - Set the λ_{ij} = the mean value coordinates of P_i with respect to its direct neighbors P_i in the 3D mesh M (!)
 - One version how to do this:
 - Determine for each P_i its direct neighbors P_i (= 1-ring of P_i)
 - Determine a least squares plane through these points (linear regression)
 - Project these points onto that plane
 - Determine the mean value coordinates of P_i w.r.t. P_i in that plane (now this is a 2D MVC problem)
- Now it is clear, why we had to allow $\lambda_{ij} \neq \lambda_{ji}$!

Putting it All Together

- Calculate all the λ_{ii}
- Having those, set up matrix A and vectors **b** and **c**
- Solve the LES's $A\mathbf{u} = \mathbf{b}$ und $A\mathbf{v} = \mathbf{c}$
 - Use a sparse solver to solve for **u** and **v**

Bremen Ŵ Application of the Parameterization to Texturing

Many further applications of such parameterization methods exist, because parameterization allows us to operate on a mesh, as if it was flat, i.e., living in the 2D plane.

Demo using an iterative solver for the sparse linear system, showing intermediate solutions of the parameterization

Advanced Computer Graphics

Ba bess B eres verarb Arbe bou ndary ten no \square á 0 hand nn; Ing ere ggraphtzliche em \mathbf{O} **Tutorial**) ufgabe die me

Videos of the Demo

.... **OpenGL Framework**

.

OpenGL Framework

