Advanced Computer Graphics Parameterization

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

(U) Examples of Parameterization

- The line parameter t on a straight line
- The knot vector of B-splines
- Latitude/longitude coordinates on the globe

$\mathrm{CB}_{\mathrm{V}} \mathrm{Z}$

Notation and Terms

- Problem definition:

Let $V=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{R}^{3}$ be the set of vertices of a mesh M.
Find a mapping (= parameterization)

$$
g: V \rightarrow \mathbb{R}^{2}
$$

with the following properties:

- $g(M)$ must not contain self-intersections
- l.e., no inverted triangles
- Otherwise, $f=g^{-1}$ would not exist!
- Using barycentric interpolation, the function g can be extended to the interior of the triangles

More notation

- $\mathrm{P}_{i}=$ mesh vertices, $p_{i}=$ parameter points
- $V=V_{I} \cup V_{B}$
$V_{I}=\left\{P_{1}, \ldots, P_{n}\right\}=$ "inner" vertices
$V_{B}=\left\{P_{n+1}, \ldots, P_{n+b}\right\}=$ "boundary" vertices
- $N=n+b$
- $p_{n+1,}, \ldots, p_{n+b}=$ boundary polygon in the parameter domain u, v
- $g\left(\mathrm{P}_{\mathrm{i}}\right)=p_{i}=\left(u_{i}, v_{i}\right)$
- $E=$ set of edges, corresponding in M and in $g(M)$

Motivation of the Parameterization Method

- Fix the border polygon $p_{n+1, \ldots}, p_{n+b}$
- How to determine the interior p_{i} 's ?
- Idea: "edges = springs"
- Assumption: rest length of springs $=0$
- So, energy stored in an extended spring $=\frac{1}{2} D s^{2}$ where $D=$ spring constant, $s=$ length of the spring
- Set $D_{i j}>0$ for all edges $\left(p_{i}, p_{j}\right)$, and set $D_{i j}=0$ for all other (i, j)
- Generalization: we allow $D_{i j} \neq D_{j i}$!
- Define the total energy of a parameterization: $E=\sum_{i=1}^{n} \sum_{j=1}^{N} D_{i j}\left\|p_{i}-p_{j}\right\|^{2}$
- Goal: minimize this energy (penalty function)

mive
 The Parameterization Method

- Partial derivatives of E are

$$
\forall i=1 \ldots n: \frac{\partial E}{\partial p_{i}}=\sum_{j=1}^{N} D_{i j}\left(p_{i}-p_{j}\right)
$$

- Setting those to 0 yields

$$
\forall i=1 \ldots n: p_{i} \sum_{j=1}^{N} D_{i j}=\sum_{j=1}^{N} D_{i j} p_{j}
$$

- In other words: each interior parameter point p_{i} must be a convex combination of its neighbors (its 1-ring), in particular

$$
\forall i=1 \ldots n: p_{i}=\sum_{j=1}^{N} \lambda_{i j} p_{j}, \quad \text { mit } \quad \lambda_{i j}=\frac{D_{i j}}{\sum_{k=1}^{N} D_{i k}}
$$

- Splitting the sum on the right hand side yields

$$
p_{i}=\sum_{j=1}^{n} \lambda_{i j} p_{j}+\sum_{j=n+1}^{N} \lambda_{i j} p_{j}
$$

and thus

$$
\begin{equation*}
p_{i}-\sum_{j=1}^{n} \lambda_{i j} p_{j}=\sum_{j=n+1}^{N} \lambda_{i j} p_{j} \tag{1}
\end{equation*}
$$

- These are two simple linear equation systems $A \mathbf{u}=\mathbf{b}$ und $A \mathbf{v}=\mathbf{c}$
where $A=\left(a_{i j}\right)_{n \times n} \quad \mathbf{u}=\left(u_{1}, \ldots, u_{n}\right) \quad \mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$
with $\quad a_{i j}= \begin{cases}1 & , i=j \\ -\lambda_{i j} & ,\left(p_{i}, p_{j}\right) \in E \quad, \quad b_{i}=\sum_{j=n+1}^{N} \lambda_{i j} u_{j} \quad, \quad c_{i}=\sum_{j=n+1}^{N} \lambda_{i j} v_{j} . \text { sonst } \\ 0 & ,\end{cases}$
- Final step for generating the parameterization: choose λ 's such, that

$$
\begin{aligned}
& \forall(i, j) \in E: \quad \lambda_{i j}>0 \quad, \quad \forall(i, j) \notin E: \lambda_{i j}=0 \quad, \quad \sum_{j=1}^{N} \lambda_{i j}=1 \\
& i=1 \ldots n, \quad j=1 \ldots N
\end{aligned}
$$

then solve the LES for \mathbf{u} and \mathbf{v}

- Theorem:

If the λ 's are chosen as described above, then the matrix A is non-singular.

- In other words: The linear systems have a unique solution

Proof

- Definition:

An $n \times n$ matrix A is called decomposable (aka reducible) \Leftrightarrow there exists a permutation matrix P such that

$$
A^{\prime}=P^{-1} A P=\left(\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right)
$$

where B and D are square matrices, too.
Otherwise it is called non-decomposable.

- Note: In our application, P is equivalent to a renumbering of the vertices in M and, likewise, the parameter points
- In our case: A is of the special form

$$
A=I-\Lambda
$$

where

$$
\Lambda=\left(\lambda_{i j}\right), i, j=1 \ldots n, \quad \lambda_{i j} \geq 0
$$

- Conjecture: Λ is non-decomposable (thus, A is non-decomposable, too)
- Proof:

1. If Λ was decomposable, then a renumbering of vertices would be possible such that

$$
\Lambda=\left(\begin{array}{ll}
B & 0 \\
0 & D
\end{array}\right)
$$

Note: $\lambda_{i j}=0 \Leftrightarrow \lambda_{j i}=0$
2. Consequence: the graph (mesh) would consist of 2 non-connected parts

- Further notes on matrix Λ :
- Every row i corresponds to the inner point p_{i}
- $\lambda_{i j}>0 \Leftrightarrow(i, j) \in E$
- Note: Λ does not contain $\lambda_{i j}$'s corresponding to edges connecting a boundary point!
- If p_{i} has no edges to boundary points, then $\sum_{j=1}^{n} \lambda_{i j}=1$

- If p_{i} does have edges to boundary points, then $\sum_{j=1}^{n} \lambda_{i j}<1$
- Theorem from matrix theory (without proof):

Let A be a non-decomposable matrix with non-negative elements.
Denote the sums of the rows with

$$
s_{i}=\sum_{j=1}^{n} a_{i j}, \quad i=1 \ldots n
$$

Assume that A has the property that

$$
\min _{i=1 \ldots n} s_{i} \nsupseteq \max _{i=1 \ldots n} s_{i}
$$

Let r be the maximum eigenvalue of A.
Then, $r<\max _{i=1 \ldots n} s_{i}$.

- Now for the proof that A is non-singular:
- We have to show

$$
A w=0 \Leftrightarrow w=0
$$

- Plugging in yields

$$
(I-\Lambda) w=0 \Leftrightarrow \Lambda w=w
$$

- Assumption: there exists such a $w \neq 0$
- Then, 1 would be an eigenvalue of Λ
- For our Λ, we know that some of the $s_{i}=1$, and some $s_{i}<1$
- Therefore, by the previous theorem: the maximal eigenvalue $<1 \rightarrow$ 乡

$-$
 Some Concrete Choices for the λ^{\prime} 's

- Naïve choice [1963, graph drawing]:
- Set $\lambda_{i j}=1 / d_{i}$ for each P_{i}, where $d_{i}=$ degree of the vertex $=$ \#neighbors
- In other words: Each p_{i} is the "center of mass" of its neighbors
- This is called uniform parameterization
- By analogy to uniform parameterization for B-splines
- Chord length parameterization:
- Set $w_{i j}=1 /\left\|P_{j}-P_{i}\right\|$ (in 3D space)
- Set $\lambda_{i j}=\frac{w_{i j}}{\sum_{j=1}^{N} w_{i j}}$
- So, the stiffness of edges in the 2D mesh (in the parameter domain) is inversely proportional to the length of their edges in the 3D mesh
- Use mean value coordinates (MVC):
- Set the $\lambda_{i j}=$ the mean value coordinates of P_{i} with respect to its direct neighbors P_{j} in the 3D mesh $M(!)$
- One version how to do this:
- Determine for each P_{i} its direct neighbors P_{j} ($=1$-ring of P_{i})
- Determine a least squares plane through these points (linear regression)
- Project these points onto that plane
- Determine the mean value coordinates of P_{i} w.r.t. P_{j} in that plane (now this is a 2D MVC problem)
- Now it is clear, why we had to allow $\lambda_{i j} \neq \lambda_{j i}$!

Bremel
 Putting it All Together

- Calculate all the $\lambda_{i j}$
- Having those, set up matrix A and vectors \mathbf{b} and \mathbf{c}
- Solve the LES's $A \mathbf{u}=\mathbf{b}$ und $A \mathbf{v}=\mathbf{c}$
- Use a sparse solver to solve for \mathbf{u} and \mathbf{v}

Bremen

Application of the Parameterization to Texturing

Many further applications of such parameterization methods exist, because parameterization allows us to operate on a mesh, as if it was flat, i.e., living in the 2D plane.

OpenGL Framework

，
 \title{
（4）Videos of the Demo
}
 \title{
（4）Videos of the Demo
} x^{2} （10
．
保
（1）2 （啨

2

\square
\square
\square

.
.．位

